\[ \left (2 \text {Global$\grave { }$x}^2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^3+\text {Global$\grave { }$x} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^4+2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})+\text {Global$\grave { }$x}\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^5+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})=0 \] ✓ Mathematica : cpu = 0.370198 (sec), leaf count = 669
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \frac {\sqrt [3]{9 c_1^2 \text {Global$\grave { }$x}^2+3 \sqrt {3} \sqrt {-4 c_1^3 \text {Global$\grave { }$x}^6-c_1^4 \text {Global$\grave { }$x}^4+18 c_1^2 \text {Global$\grave { }$x}^4+4 c_1^3 \text {Global$\grave { }$x}^2+27 \text {Global$\grave { }$x}^4}+2 c_1^3+27 \text {Global$\grave { }$x}^2}}{3 \sqrt [3]{2} \text {Global$\grave { }$x}}-\frac {\sqrt [3]{2} \left (-3 c_1 \text {Global$\grave { }$x}^2-c_1^2\right )}{3 \text {Global$\grave { }$x} \sqrt [3]{9 c_1^2 \text {Global$\grave { }$x}^2+3 \sqrt {3} \sqrt {-4 c_1^3 \text {Global$\grave { }$x}^6-c_1^4 \text {Global$\grave { }$x}^4+18 c_1^2 \text {Global$\grave { }$x}^4+4 c_1^3 \text {Global$\grave { }$x}^2+27 \text {Global$\grave { }$x}^4}+2 c_1^3+27 \text {Global$\grave { }$x}^2}}+\frac {c_1}{3 \text {Global$\grave { }$x}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{9 c_1^2 \text {Global$\grave { }$x}^2+3 \sqrt {3} \sqrt {-4 c_1^3 \text {Global$\grave { }$x}^6-c_1^4 \text {Global$\grave { }$x}^4+18 c_1^2 \text {Global$\grave { }$x}^4+4 c_1^3 \text {Global$\grave { }$x}^2+27 \text {Global$\grave { }$x}^4}+2 c_1^3+27 \text {Global$\grave { }$x}^2}}{6 \sqrt [3]{2} \text {Global$\grave { }$x}}+\frac {\left (1+i \sqrt {3}\right ) \left (-3 c_1 \text {Global$\grave { }$x}^2-c_1^2\right )}{3\ 2^{2/3} \text {Global$\grave { }$x} \sqrt [3]{9 c_1^2 \text {Global$\grave { }$x}^2+3 \sqrt {3} \sqrt {-4 c_1^3 \text {Global$\grave { }$x}^6-c_1^4 \text {Global$\grave { }$x}^4+18 c_1^2 \text {Global$\grave { }$x}^4+4 c_1^3 \text {Global$\grave { }$x}^2+27 \text {Global$\grave { }$x}^4}+2 c_1^3+27 \text {Global$\grave { }$x}^2}}+\frac {c_1}{3 \text {Global$\grave { }$x}}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{9 c_1^2 \text {Global$\grave { }$x}^2+3 \sqrt {3} \sqrt {-4 c_1^3 \text {Global$\grave { }$x}^6-c_1^4 \text {Global$\grave { }$x}^4+18 c_1^2 \text {Global$\grave { }$x}^4+4 c_1^3 \text {Global$\grave { }$x}^2+27 \text {Global$\grave { }$x}^4}+2 c_1^3+27 \text {Global$\grave { }$x}^2}}{6 \sqrt [3]{2} \text {Global$\grave { }$x}}+\frac {\left (1-i \sqrt {3}\right ) \left (-3 c_1 \text {Global$\grave { }$x}^2-c_1^2\right )}{3\ 2^{2/3} \text {Global$\grave { }$x} \sqrt [3]{9 c_1^2 \text {Global$\grave { }$x}^2+3 \sqrt {3} \sqrt {-4 c_1^3 \text {Global$\grave { }$x}^6-c_1^4 \text {Global$\grave { }$x}^4+18 c_1^2 \text {Global$\grave { }$x}^4+4 c_1^3 \text {Global$\grave { }$x}^2+27 \text {Global$\grave { }$x}^4}+2 c_1^3+27 \text {Global$\grave { }$x}^2}}+\frac {c_1}{3 \text {Global$\grave { }$x}}\right \}\right \}\]
✓ Maple : cpu = 0.175 (sec), leaf count = 583
\[ \left \{ y \left ( x \right ) ={\frac {1}{12\,{\it \_C1}\,x} \left ( \left ( -12\,i{x}^{2}{\it \_C1}-i \left ( 108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8 \right ) ^{{\frac {2}{3}}}+4\,i \right ) \sqrt {3}+12\,{x}^{2}{\it \_C1}- \left ( \sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}+2 \right ) ^{2} \right ) {\frac {1}{\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}}},y \left ( x \right ) ={\frac {1}{12\,{\it \_C1}\,x} \left ( \left ( 12\,i{x}^{2}{\it \_C1}+i \left ( 108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8 \right ) ^{{\frac {2}{3}}}-4\,i \right ) \sqrt {3}+12\,{x}^{2}{\it \_C1}- \left ( \sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}+2 \right ) ^{2} \right ) {\frac {1}{\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}}},y \left ( x \right ) ={\frac {1}{6\,{\it \_C1}\,x}\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+4\,{\it \_C1}\,{x}^{4}+18\,{{\it \_C1}}^{2}{x}^{2}-{x}^{2}-4\,{\it \_C1}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}-{\frac {6\,{x}^{2}{\it \_C1}-2}{3\,{\it \_C1}\,x}{\frac {1}{\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+4\,{\it \_C1}\,{x}^{4}+18\,{{\it \_C1}}^{2}{x}^{2}-{x}^{2}-4\,{\it \_C1}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}}}-{\frac {1}{3\,{\it \_C1}\,x}} \right \} \]