\[ (\text {Global$\grave { }$f}(\text {Global$\grave { }$y}(\text {Global$\grave { }$x})+\text {Global$\grave { }$x})+1) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+\text {Global$\grave { }$f}(\text {Global$\grave { }$y}(\text {Global$\grave { }$x})+\text {Global$\grave { }$x})=0 \] ✓ Mathematica : cpu = 31.9005 (sec), leaf count = 49
\[\text {Solve}\left [\int _1^{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})} \left (-\int _1^{\text {Global$\grave { }$x}} \text {Global$\grave { }$f}'(K[1]+K[2]) \, dK[1]+\text {Global$\grave { }$f}(K[2]+\text {Global$\grave { }$x})+1\right ) \, dK[2]+\int _1^{\text {Global$\grave { }$x}} \text {Global$\grave { }$f}(K[1]+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})) \, dK[1]=c_1,\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ]\]
✓ Maple : cpu = 0.028 (sec), leaf count = 22
\[ \left \{ y \left ( x \right ) =-x+{\it RootOf} \left ( -x+\int ^{{\it \_Z}}\!1+f \left ( {\it \_a} \right ) {d{\it \_a}}+{\it \_C1} \right ) \right \} \]