\[ \left (\text {Global$\grave { }$x} \sqrt {\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2+1}-\text {Global$\grave { }$y}(\text {Global$\grave { }$x}) \left (\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2\right )\right ) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-\sqrt {\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2+1} \text {Global$\grave { }$y}(\text {Global$\grave { }$x})-\text {Global$\grave { }$x} \left (\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2\right )=0 \] ✓ Mathematica : cpu = 0.105124 (sec), leaf count = 27
\[\text {Solve}\left [\sqrt {\text {Global$\grave { }$x}^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2+1}+\tan ^{-1}\left (\frac {\text {Global$\grave { }$x}}{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})}\right )=c_1,\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ]\]
✓ Maple : cpu = 0.197 (sec), leaf count = 27
\[ \left \{ \arctan \left ( {\frac {y \left ( x \right ) }{x}} \right ) -\sqrt {{x}^{2}+ \left ( y \left ( x \right ) \right ) ^{2}+1}-{\it \_C1}=0 \right \} \]