\[ \text {Global$\grave { }$a} \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})+\text {Global$\grave { }$b} \text {Global$\grave { }$x}+\text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2=0 \] ✓ Mathematica : cpu = 0.0426331 (sec), leaf count = 71
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to c_1+\frac {1}{2} \left (-\frac {\left (\text {Global$\grave { }$a}^2-4 \text {Global$\grave { }$b} \text {Global$\grave { }$x}\right )^{3/2}}{6 \text {Global$\grave { }$b}}-\text {Global$\grave { }$a} \text {Global$\grave { }$x}\right )\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to c_1+\frac {1}{2} \left (\frac {\left (\text {Global$\grave { }$a}^2-4 \text {Global$\grave { }$b} \text {Global$\grave { }$x}\right )^{3/2}}{6 \text {Global$\grave { }$b}}-\text {Global$\grave { }$a} \text {Global$\grave { }$x}\right )\right \}\right \}\]
✓ Maple : cpu = 0.651 (sec), leaf count = 49
\[ \left \{ y \left ( x \right ) =-{\frac {ax}{2}}-{\frac {1}{12\,b} \left ( {a}^{2}-4\,bx \right ) ^{{\frac {3}{2}}}}+{\it \_C1},y \left ( x \right ) =-{\frac {ax}{2}}+{\frac {1}{12\,b} \left ( {a}^{2}-4\,bx \right ) ^{{\frac {3}{2}}}}+{\it \_C1} \right \} \]