\[ \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2+e^{\text {Global$\grave { }$x}} \left (\text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right )=0 \] ✓ Mathematica : cpu = 0.526824 (sec), leaf count = 134
\[\left \{\text {Solve}\left [-\frac {-e^{\text {Global$\grave { }$x}/2} \sqrt {4 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})+e^{\text {Global$\grave { }$x}}}-4 \text {Global$\grave { }$y}(\text {Global$\grave { }$x}) \log \left (\sqrt {4 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})+e^{\text {Global$\grave { }$x}}}+e^{\text {Global$\grave { }$x}/2}\right )+e^{\text {Global$\grave { }$x}}}{2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})}=c_1,\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ],\text {Solve}\left [2 \log (\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))-\frac {e^{\text {Global$\grave { }$x}/2} \sqrt {4 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})+e^{\text {Global$\grave { }$x}}}+4 \text {Global$\grave { }$y}(\text {Global$\grave { }$x}) \log \left (\sqrt {4 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})+e^{\text {Global$\grave { }$x}}}+e^{\text {Global$\grave { }$x}/2}\right )+e^{\text {Global$\grave { }$x}}}{2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})}=c_1,\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\right ]\right \}\]
✓ Maple : cpu = 0.669 (sec), leaf count = 115
\[ \left \{ -{\frac {1}{2\,y \left ( x \right ) }\sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}}-2\,{\it Artanh} \left ( \sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}{{\rm e}^{-x}} \right ) -{\frac {{{\rm e}^{x}}}{2\,y \left ( x \right ) }}+\ln \left ( y \left ( x \right ) \right ) -{\it \_C1}=0,-{\frac {{{\rm e}^{x}}}{2\,y \left ( x \right ) }}+\ln \left ( y \left ( x \right ) \right ) +{\frac {1}{2\,y \left ( x \right ) }\sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}}+2\,{\it Artanh} \left ( \sqrt {{{\rm e}^{2\,x}}+4\,y \left ( x \right ) {{\rm e}^{x}}}{{\rm e}^{-x}} \right ) -{\it \_C1}=0 \right \} \]