\[ \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2+2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x}) \cot (\text {Global$\grave { }$x}) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})-\text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2=0 \] ✓ Mathematica : cpu = 0.033274 (sec), leaf count = 31
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to c_1 \csc ^2\left (\frac {\text {Global$\grave { }$x}}{2}\right )\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to c_1 \sec ^2\left (\frac {\text {Global$\grave { }$x}}{2}\right )\right \}\right \}\]
✓ Maple : cpu = 0.132 (sec), leaf count = 85
\[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}}{\tan \left ( x \right ) }\sqrt {1- \left ( \left ( \tan \left ( x \right ) \right ) ^{2}+1 \right ) ^{-1}}\sqrt { \left ( \tan \left ( x \right ) \right ) ^{2}+1} \left ( {\frac {1}{\sqrt { \left ( \tan \left ( x \right ) \right ) ^{2}+1}}}+1 \right ) ^{-1}},y \left ( x \right ) ={\frac {{\it \_C1}}{\tan \left ( x \right ) } \left ( {\frac {1}{\sqrt { \left ( \tan \left ( x \right ) \right ) ^{2}+1}}}+1 \right ) \sqrt { \left ( \tan \left ( x \right ) \right ) ^{2}+1}{\frac {1}{\sqrt {1- \left ( \left ( \tan \left ( x \right ) \right ) ^{2}+1 \right ) ^{-1}}}}} \right \} \]