\[ a+x y'(x)^2-y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.373839 (sec), leaf count = 430
\[\left \{\left \{y(x)\to -\frac {8 a^2}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}-\frac {\sqrt {16 a^3 \sinh \left (c_1\right )+16 a^3 \cosh \left (c_1\right )-8 a^2 x \sinh \left (c_1\right )-8 a^2 x \cosh \left (c_1\right )-8 a^2 \sinh \left (2 c_1\right )-8 a^2 \cosh \left (2 c_1\right )+a x^2 \sinh \left (c_1\right )+a x^2 \cosh \left (c_1\right )+2 a x \sinh \left (2 c_1\right )+2 a x \cosh \left (2 c_1\right )+a \sinh \left (3 c_1\right )+a \cosh \left (3 c_1\right )}}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}-\frac {2 a x}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}+\frac {2 a \sinh \left (c_1\right )}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}+\frac {2 a \cosh \left (c_1\right )}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}\right \},\left \{y(x)\to -\frac {8 a^2}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}+\frac {\sqrt {16 a^3 \sinh \left (c_1\right )+16 a^3 \cosh \left (c_1\right )-8 a^2 x \sinh \left (c_1\right )-8 a^2 x \cosh \left (c_1\right )-8 a^2 \sinh \left (2 c_1\right )-8 a^2 \cosh \left (2 c_1\right )+a x^2 \sinh \left (c_1\right )+a x^2 \cosh \left (c_1\right )+2 a x \sinh \left (2 c_1\right )+2 a x \cosh \left (2 c_1\right )+a \sinh \left (3 c_1\right )+a \cosh \left (3 c_1\right )}}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}-\frac {2 a x}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}+\frac {2 a \sinh \left (c_1\right )}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}+\frac {2 a \cosh \left (c_1\right )}{4 a-\sinh \left (c_1\right )-\cosh \left (c_1\right )}\right \}\right \}\]
✓ Maple : cpu = 0.031 (sec), leaf count = 33
\[ \left \{ y \left ( x \right ) =-2\,\sqrt {ax},y \left ( x \right ) =2\,\sqrt {ax},y \left ( x \right ) ={\it \_C1}\,x+{\frac {a}{{\it \_C1}}} \right \} \]