\[ x^2 y'(x)^2-(y(x)-2 x) y(x) y'(x)+y(x)^2=0 \] ✓ Mathematica : cpu = 0.141002 (sec), leaf count = 75
\[\left \{\left \{y(x)\to -\frac {\cosh \left (2 c_1\right )-\sinh \left (2 c_1\right )}{x \sinh \left (2 c_1\right )+x \cosh \left (2 c_1\right )-1}\right \},\left \{y(x)\to -\frac {\cosh \left (2 c_1\right )-\sinh \left (2 c_1\right )}{x \sinh \left (2 c_1\right )+x \cosh \left (2 c_1\right )+1}\right \}\right \}\]
✓ Maple : cpu = 0.848 (sec), leaf count = 121
\[ \left \{ y \left ( x \right ) =4\,x,y \left ( x \right ) =-{\frac {{{\it \_C1}}^{2} \left ( \sqrt {2}{\it \_C1}-2\,x \right ) }{2\,{{\it \_C1}}^{2}-4\,{x}^{2}}},y \left ( x \right ) =-2\,{\frac {{{\it \_C1}}^{2} \left ( \sqrt {2}{\it \_C1}-x \right ) }{2\,{{\it \_C1}}^{2}-{x}^{2}}},y \left ( x \right ) =2\,{\frac {{{\it \_C1}}^{2} \left ( \sqrt {2}{\it \_C1}+x \right ) }{2\,{{\it \_C1}}^{2}-{x}^{2}}},y \left ( x \right ) ={\frac {{{\it \_C1}}^{2} \left ( \sqrt {2}{\it \_C1}+2\,x \right ) }{2\,{{\it \_C1}}^{2}-4\,{x}^{2}}} \right \} \]