\[ a x^2 y'(x)^2-(a-1) a x^2-2 a x y(x) y'(x)+y(x)^2=0 \] ✓ Mathematica : cpu = 0.149129 (sec), leaf count = 118
\[\left \{\left \{y(x)\to \frac {1}{2} e^{-c_1} x^{1-\frac {\sqrt {a-1}}{\sqrt {a}}} \left (e^{2 c_1}-a x^{\frac {2 \sqrt {a-1}}{\sqrt {a}}}\right )\right \},\left \{y(x)\to \frac {1}{2} e^{-c_1} x^{1-\frac {\sqrt {a-1}}{\sqrt {a}}} \left (e^{2 c_1} x^{\frac {2 \sqrt {a-1}}{\sqrt {a}}}-a\right )\right \}\right \}\]
✓ Maple : cpu = 0.127 (sec), leaf count = 138
\[ \left \{ y \left ( x \right ) =\sqrt {-a}x,y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) -\int ^{{\it \_Z}}\!{\frac {1}{a{{\it \_a}}^{2}-{{\it \_a}}^{2}+{a}^{2}-a}\sqrt { \left ( a{{\it \_a}}^{2}-{{\it \_a}}^{2}+{a}^{2}-a \right ) a}}{d{\it \_a}}+{\it \_C1} \right ) x,y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) +\int ^{{\it \_Z}}\!{\frac {1}{a{{\it \_a}}^{2}-{{\it \_a}}^{2}+{a}^{2}-a}\sqrt { \left ( a{{\it \_a}}^{2}-{{\it \_a}}^{2}+{a}^{2}-a \right ) a}}{d{\it \_a}}+{\it \_C1} \right ) x,y \left ( x \right ) =-\sqrt {-a}x \right \} \]