2.467   ODE No. 467

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y(x) y'(x)^2-4 x y'(x)+y(x)=0 \] Mathematica : cpu = 3605.28 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.069 (sec), leaf count = 148

\[ \left \{ -{\frac {{\it \_C1}\,x}{y \left ( x \right ) }{\frac {1}{\sqrt [3]{{\frac {1}{y \left ( x \right ) } \left ( 2\,x-\sqrt {4\,{x}^{2}- \left ( y \left ( x \right ) \right ) ^{2}} \right ) }}}}{\frac {1}{\sqrt [3]{{\frac {1}{ \left ( y \left ( x \right ) \right ) ^{2}} \left ( 8\,{x}^{2}-4\, \left ( y \left ( x \right ) \right ) ^{2}-4\,x\sqrt {4\,{x}^{2}- \left ( y \left ( x \right ) \right ) ^{2}} \right ) }}}}}+x=0,-{\frac {{\it \_C1}\,x}{y \left ( x \right ) }{\frac {1}{\sqrt [3]{{\frac {1}{y \left ( x \right ) } \left ( 2\,x+\sqrt {4\,{x}^{2}- \left ( y \left ( x \right ) \right ) ^{2}} \right ) }}}}{\frac {1}{\sqrt [3]{{\frac {1}{ \left ( y \left ( x \right ) \right ) ^{2}} \left ( x\sqrt {4\,{x}^{2}- \left ( y \left ( x \right ) \right ) ^{2}}+2\,{x}^{2}- \left ( y \left ( x \right ) \right ) ^{2} \right ) }}}}}+x=0 \right \} \]