\[ (y(x)+x) y'(x)^2+2 x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.174369 (sec), leaf count = 127
\[\left \{\left \{y(x)\to \frac {1}{3} \left (-2 \sqrt {e^{2 c_1}-3 e^{c_1} x}-e^{c_1}\right )\right \},\left \{y(x)\to \frac {1}{3} \left (2 \sqrt {e^{2 c_1}-3 e^{c_1} x}-e^{c_1}\right )\right \},\left \{y(x)\to e^{c_1}-2 \sqrt {e^{c_1} x+e^{2 c_1}}\right \},\left \{y(x)\to 2 \sqrt {e^{c_1} x+e^{2 c_1}}+e^{c_1}\right \}\right \}\]
✓ Maple : cpu = 0.482 (sec), leaf count = 119
\[ \left \{ \ln \left ( x \right ) -{\it Artanh} \left ( {\frac {y \left ( x \right ) +2\,x}{2\,x}{\frac {1}{\sqrt {{\frac { \left ( y \left ( x \right ) \right ) ^{2}+xy \left ( x \right ) +{x}^{2}}{{x}^{2}}}}}}} \right ) +\ln \left ( {\frac {y \left ( x \right ) }{x}} \right ) -{\it \_C1}=0,\ln \left ( x \right ) +{\it Artanh} \left ( {\frac {y \left ( x \right ) +2\,x}{2\,x}{\frac {1}{\sqrt {{\frac { \left ( y \left ( x \right ) \right ) ^{2}+xy \left ( x \right ) +{x}^{2}}{{x}^{2}}}}}}} \right ) +\ln \left ( {\frac {y \left ( x \right ) }{x}} \right ) -{\it \_C1}=0,y \left ( x \right ) = \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) x,y \left ( x \right ) = \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) x \right \} \]