2.585   ODE No. 585

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=y(x)F(log(log(y(x)))log(x)) Mathematica : cpu = 120.541 (sec), leaf count = 202

Solve[1y(x)(1K[2](xF(log(log(K[2]))log(x))log(K[2]))1x(F(log(log(K[2]))log(K[1]))(K[1]F(log(log(K[2]))log(K[1]))K[2]log(K[2])1K[2])(K[1]F(log(log(K[2]))log(K[1]))log(K[2]))2F(log(log(K[2]))log(K[1]))K[2]log(K[2])(K[1]F(log(log(K[2]))log(K[1]))log(K[2])))dK[1])dK[2]+1xF(log(log(y(x)))log(K[1]))K[1]F(log(log(y(x)))log(K[1]))log(y(x))dK[1]=c1,y(x)]

Maple : cpu = 0.485 (sec), leaf count = 168

{_bxF(ln(ln(y(x)))ln(_a))_aF(ln(ln(y(x)))ln(_a))ln(y(x))d_a+y(x)1_f(xF(ln(ln(_f))ln(x))ln(_f))_bxF(ln(ln(_f))ln(_a))(_aF(ln(ln(_f))ln(_a))ln(_f))2(_aD(F)(ln(ln(_f))ln(_a))_fln(_f)_f1)+D(F)(ln(ln(_f))ln(_a))(_aF(ln(ln(_f))ln(_a))ln(_f))_fln(_f)d_ad_f+_C1=0}