\[ y'(x)=\frac {x^4+x^4 \log (x)-2 x^2 y(x)-2 x^2 y(x) \log (x)+y(x)^2+y(x)^2 \log (x)+2 e^x x-2 x-\log (x)-1}{e^x-1} \] ✗ Mathematica : cpu = 3599.93 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 5.949 (sec), leaf count = 100
\[ \left \{ y \left ( x \right ) ={1 \left ( {{\it \_C1}\,{x}^{2} \left ( {{\rm e}^{\int \! \left ( {\frac {{{\rm e}^{x}}}{\ln \left ( x \right ) +1}}- \left ( \ln \left ( x \right ) +1 \right ) ^{-1} \right ) ^{-1}\,{\rm d}x}} \right ) ^{-2}}-{x}^{2}+{{\it \_C1} \left ( {{\rm e}^{\int \! \left ( {\frac {{{\rm e}^{x}}}{\ln \left ( x \right ) +1}}- \left ( \ln \left ( x \right ) +1 \right ) ^{-1} \right ) ^{-1}\,{\rm d}x}} \right ) ^{-2}}+1 \right ) \left ( {{\it \_C1} \left ( {{\rm e}^{\int \! \left ( {\frac {{{\rm e}^{x}}}{\ln \left ( x \right ) +1}}- \left ( \ln \left ( x \right ) +1 \right ) ^{-1} \right ) ^{-1}\,{\rm d}x}} \right ) ^{-2}}-1 \right ) ^{-1}} \right \} \]