\[ y'(x)=-\frac {1}{-e^{y(x)} y(x) \text {$\_$F1}(y(x)-\log (x))-x} \] ✗ Mathematica : cpu = 2.17 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == -(-x - E^y[x]*y[x]*_F1[-Log[x] + y[x]])^(-1), y[x], x]
✓ Maple : cpu = 1.542 (sec), leaf count = 43
\[ \left \{ {\frac { \left ( \ln \left ( x \right ) \right ) ^{2}}{2}}-y \left ( x \right ) \ln \left ( x \right ) -\int ^{y \left ( x \right ) -\ln \left ( x \right ) }\!{\frac {{\it \_F1} \left ( {\it \_a} \right ) {\it \_a}+{{\rm e}^{-{\it \_a}}}}{{\it \_F1} \left ( {\it \_a} \right ) }}{d{\it \_a}}+{\it \_C1}=0 \right \} \]