\[ y'(x)=\frac {y(x) \left (y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+2}+y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log ^2(x) x^{\frac {2}{\log (x)+1}+2}+2 y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+2}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+2}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+2}-1\right )}{x (\log (x)+1)} \] ✓ Mathematica : cpu = 0.212503 (sec), leaf count = 28
\[\left \{\left \{y(x)\to \frac {1}{\left (c_1 e^{\frac {x^4}{4}}+1\right ) (\log (x)+1)}\right \}\right \}\]
✓ Maple : cpu = 0.119 (sec), leaf count = 197
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{-{\frac {{x}^{4}}{4}}}} \left ( \left ( \ln \left ( x \right ) \right ) ^{2}{{\rm e}^{{\frac {-{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\, \left ( \ln \left ( x \right ) \right ) ^{2}-4\,\ln \left ( \ln \left ( x \right ) +1 \right ) \ln \left ( x \right ) -4\,\ln \left ( \ln \left ( x \right ) +1 \right ) }{4\,\ln \left ( x \right ) +4}}}}{x}^{-2\,{\frac {\ln \left ( x \right ) }{\ln \left ( x \right ) +1}}}+2\,\ln \left ( x \right ) {{\rm e}^{1/4\,{\frac {-{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\, \left ( \ln \left ( x \right ) \right ) ^{2}-4\,\ln \left ( \ln \left ( x \right ) +1 \right ) \ln \left ( x \right ) -4\,\ln \left ( \ln \left ( x \right ) +1 \right ) }{\ln \left ( x \right ) +1}}}}{x}^{-2\,{\frac {\ln \left ( x \right ) }{\ln \left ( x \right ) +1}}}+{\it \_C1}\,\ln \left ( x \right ) +{{\rm e}^{{\frac {-{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\, \left ( \ln \left ( x \right ) \right ) ^{2}-4\,\ln \left ( \ln \left ( x \right ) +1 \right ) \ln \left ( x \right ) -4\,\ln \left ( \ln \left ( x \right ) +1 \right ) }{4\,\ln \left ( x \right ) +4}}}}{x}^{-2\,{\frac {\ln \left ( x \right ) }{\ln \left ( x \right ) +1}}}+{\it \_C1} \right ) ^{-1}} \right \} \]