\[ y'(x)=\frac {\csc \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{x}\right ) \left (x^4 \sin \left (\frac {y(x)}{2 x}\right ) \sin \left (\frac {y(x)}{x}\right ) \cos \left (\frac {y(x)}{2 x}\right )-\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{x}\right )-\frac {1}{2} y(x) \sin \left (\frac {y(x)}{x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.0863334 (sec), leaf count = 30
\[\left \{\left \{y(x)\to x \sin ^{-1}\left ((x+1) e^{c_1+\frac {x^2}{2}-x-\frac {3}{2}}\right )\right \}\right \}\]
✓ Maple : cpu = 0.169 (sec), leaf count = 45
\[ \left \{ y \left ( x \right ) ={\frac {x}{2}\arccos \left ( {\frac {{{\rm e}^{{x}^{2}}}{\it \_C1}\,{x}^{2}}{ \left ( {{\rm e}^{x}} \right ) ^{2}}}+2\,{\frac {{{\rm e}^{{x}^{2}}}{\it \_C1}\,x}{ \left ( {{\rm e}^{x}} \right ) ^{2}}}+{\frac {{{\rm e}^{{x}^{2}}}{\it \_C1}}{ \left ( {{\rm e}^{x}} \right ) ^{2}}}+1 \right ) } \right \} \]