\[ y'(x)=\frac {y(x)}{x}-F(x) \left (-x^2-2 x y(x)+y(x)^2\right ) \] ✓ Mathematica : cpu = 0.73555 (sec), leaf count = 104
\[\left \{\left \{y(x)\to -\frac {x \left (-\exp \left (2 \sqrt {2} \left (\int _1^x K[1] (-F(K[1])) \, dK[1]+c_1\right )\right )+\sqrt {2} \exp \left (2 \sqrt {2} \left (\int _1^x K[1] (-F(K[1])) \, dK[1]+c_1\right )\right )-1-\sqrt {2}\right )}{\exp \left (2 \sqrt {2} \left (\int _1^x K[1] (-F(K[1])) \, dK[1]+c_1\right )\right )+1}\right \}\right \}\]
✓ Maple : cpu = 0.039 (sec), leaf count = 29
\[ \left \{ y \left ( x \right ) ={\frac {x \left ( \sqrt {2}+2\,\tanh \left ( \left ( \int \!F \left ( x \right ) x\,{\rm d}x+{\it \_C1} \right ) \sqrt {2} \right ) \right ) \sqrt {2}}{2}} \right \} \]