\[ y'(x)=\frac {(y(x)-x+\log (x+1))^2+x}{x+1} \] ✓ Mathematica : cpu = 0.025261 (sec), leaf count = 24
\[\left \{\left \{y(x)\to \frac {1}{c_1-\log (x+1)}+x-\log (x+1)\right \}\right \}\]
✓ Maple : cpu = 0.062 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) =-{\frac { \left ( \ln \left ( 1+x \right ) \right ) ^{2}+{\it \_C1}\,\ln \left ( 1+x \right ) -x\ln \left ( 1+x \right ) -{\it \_C1}\,x+1}{\ln \left ( 1+x \right ) +{\it \_C1}}} \right \} \]