\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) + \left ( ax+b \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( cx+d \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.048006 (sec), leaf count = 172 \[ \left \{\left \{y(x)\to c_1 e^{\frac {c x}{a}-\frac {a x^2}{2}-b x} H_{\frac {-a^3+a^2 d-a b c+c^2}{a^3}}\left (\frac {a b-2 c}{\sqrt {2} a^{3/2}}+\frac {\sqrt {a} x}{\sqrt {2}}\right )+c_2 e^{\frac {c x}{a}-\frac {a x^2}{2}-b x} \, _1F_1\left (-\frac {-a^3+d a^2-b c a+c^2}{2 a^3};\frac {1}{2};\left (\frac {a b-2 c}{\sqrt {2} a^{3/2}}+\frac {\sqrt {a} x}{\sqrt {2}}\right )^2\right )\right \}\right \} \]
Maple: cpu = 0.047 (sec), leaf count = 105 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-{\frac {cx}{a}}}}{ {\sl M}\left ({\frac {d{a}^{2}-abc+{c}^{2}}{2\,{a}^{3}}},\,{\frac {1}{2 }},\,-{\frac { \left ( {a}^{2}x+ab-2\,c \right ) ^{2}}{2\,{a}^{3}}} \right )}+{\it \_C2}\,{{\rm e}^{-{\frac {cx}{a}}}}{{\sl U}\left ({\frac {d{a}^{2}-abc+{c}^{2}}{2\,{a}^{3}}},\,{\frac {1}{2}},\,-{\frac { \left ( {a}^{2}x+ab-2\,c \right ) ^{2}}{2\,{a}^{3}}}\right )} \right \} \]