\[ \boxed { x{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) - \left ( a+b \right ) \left ( 1+x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +abxy \left ( x \right ) =0} \]
Mathematica: cpu = 0.097512 (sec), leaf count = 107 \[ \left \{\left \{y(x)\to c_1 U\left (-\frac {-a^2-b a-a+b}{a-b},a+b+2,(a-b) x\right ) e^{(a+b+1) \log (x)+b x}+c_2 L_{\frac {-a^2-a b-a+b}{a-b}}^{a+b+1}(x (a-b)) e^{(a+b+1) \log (x)+b x}\right \}\right \} \]
Maple: cpu = 0.094 (sec), leaf count = 91 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{bx}}{{\sl M}\left ({ \frac {{a}^{2}+ab+a-b}{a-b}},\,a+b+2,\,x \left ( a-b \right ) \right )}{x }^{a+b+1}+{\it \_C2}\,{{\rm e}^{bx}}{{\sl U}\left ({\frac {{a}^{2}+ab+a -b}{a-b}},\,a+b+2,\,x \left ( a-b \right ) \right )}{x}^{a+b+1} \right \} \]