\[ \boxed { x{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) + \left ( ax+b \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( cx+d \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.065008 (sec), leaf count = 166 \[ \left \{\left \{y(x)\to c_1 e^{\frac {1}{2} x \left (-\sqrt {a^2-4 c}-a\right )} U\left (-\frac {-a b-\sqrt {a^2-4 c} b+2 d}{2 \sqrt {a^2-4 c}},b,\sqrt {a^2-4 c} x\right )+c_2 e^{\frac {1}{2} x \left (-\sqrt {a^2-4 c}-a\right )} L_{\frac {-b \sqrt {a^2-4 c}-a b+2 d}{2 \sqrt {a^2-4 c}}}^{b-1}\left (x \sqrt {a^2-4 c}\right )\right \}\right \} \]
Maple: cpu = 0.140 (sec), leaf count = 123 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-{\frac {x}{2} \left ( a+\sqrt {{a}^{2}-4\,c} \right ) }}}{{\sl M}\left ({\frac {1}{2} \left ( b\sqrt {{a}^{2}-4\,c}+ab-2\,d \right ) {\frac {1}{\sqrt {{a}^{2 }-4\,c}}}},\,b,\,\sqrt {{a}^{2}-4\,c}x\right )}+{\it \_C2}\,{{\rm e}^{- {\frac {x}{2} \left ( a+\sqrt {{a}^{2}-4\,c} \right ) }}}{{\sl U}\left ({ \frac {1}{2} \left ( b\sqrt {{a}^{2}-4\,c}+ab-2\,d \right ) {\frac {1}{ \sqrt {{a}^{2}-4\,c}}}},\,b,\,\sqrt {{a}^{2}-4\,c}x\right )} \right \} \]