\[ \boxed { {x}^{2}{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +2\,x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( l{x}^{2}+ax-n \left ( n+1 \right ) \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.054007 (sec), leaf count = 142 \[ \left \{\left \{y(x)\to c_1 e^{n \log (x)-i \sqrt {l} x} U\left (\frac {i \left (a-2 i \sqrt {l} n-2 i \sqrt {l}\right )}{2 \sqrt {l}},2 n+2,2 i \sqrt {l} x\right )+c_2 e^{n \log (x)-i \sqrt {l} x} L_{-\frac {i \left (a-2 i \sqrt {l} n-2 i \sqrt {l}\right )}{2 \sqrt {l}}}^{2 n+1}\left (2 i \sqrt {l} x\right )\right \}\right \} \]
Maple: cpu = 0.093 (sec), leaf count = 51 \[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}}{x}{{\sl M}_{{-{\frac {i}{2}}a{\frac {1}{\sqrt {l}}}},\,n+{\frac {1}{2}}}\left (2\,i\sqrt {l} x\right )}}+{\frac {{\it \_C2}}{x}{{\sl W}_{{-{\frac {i}{2}}a{\frac {1} {\sqrt {l}}}},\,n+{\frac {1}{2}}}\left (2\,i\sqrt {l}x\right )}} \right \} \]