\[ \boxed { 48\,x \left ( x-1 \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) + \left ( 152\,x-40 \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +53\,y \left ( x \right ) =0} \]
Mathematica: cpu = 0.078010 (sec), leaf count = 92 \[ \left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {13}{12}-\frac {\sqrt {\frac {5}{2}}}{6},\frac {13}{12}+\frac {\sqrt {\frac {5}{2}}}{6};\frac {5}{6};x\right )+\sqrt [6]{-1} c_2 \sqrt [6]{x} \, _2F_1\left (\frac {5}{4}-\frac {\sqrt {\frac {5}{2}}}{6},\frac {5}{4}+\frac {\sqrt {\frac {5}{2}}}{6};\frac {7}{6};x\right )\right \}\right \} \]
Maple: cpu = 0.031 (sec), leaf count = 62 \[ \left \{ y \left ( x \right ) ={\it \_C1}\, {\mbox {$_2$F$_1$}({\frac {13}{12}}-{\frac {\sqrt {2}\sqrt {5}}{12}},{\frac {13}{12}}+{\frac {\sqrt {2}\sqrt {5}}{12}};\,{\frac {5}{6}};\,x)} +{\it \_C2}\,\sqrt [6]{x} {\mbox {$_2$F$_1$}({\frac {5}{4}}-{\frac {\sqrt {2}\sqrt {5}}{12}},{\frac {5}{4}}+{\frac {\sqrt {2}\sqrt {5}}{12}};\,{\frac {7}{6}};\,x)} \right \} \]