\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( y \left ( x \right ) \right ) ^{2}-ax-b=0} \]
Mathematica: cpu = 0.051507 (sec), leaf count = 79 \[ \left \{\left \{y(x)\to -\frac {\sqrt [3]{a} c_1 \text {Ai}'\left (\frac {b+a x}{a^{2/3}}\right )+\sqrt [3]{a} \text {Bi}'\left (\frac {b+a x}{a^{2/3}}\right )}{-c_1 \text {Ai}\left (\frac {b+a x}{a^{2/3}}\right )-\text {Bi}\left (\frac {b+a x}{a^{2/3}}\right )}\right \}\right \} \]
Maple: cpu = 0.125 (sec), leaf count = 79 \[ \left \{ y \left ( x \right ) ={-i\sqrt [3]{-ia} \left ( {{\rm Ai}^{(1 )}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )}{\it \_C1}+{{\rm Bi}^{(1)}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3 }}}}\right )} \right ) \left ( {{\rm Ai}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )}{\it \_C1}+{{\rm Bi}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )} \right ) ^{-1}} \right \} \]
Sage: cpu = 2.744 (sec), leaf count = 0 \[ \left [\left [y\left (x\right ) = \frac {3 \, a^{5} c x^{5} {\left (4 i \, \operatorname {I_{\frac {4}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 4 i \, \operatorname {I_{-\frac {2}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 3 \, a^{4} b c x^{4} {\left (20 i \, \operatorname {I_{\frac {4}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 20 i \, \operatorname {I_{-\frac {2}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 3 \, a^{3} b^{2} c x^{3} {\left (40 i \, \operatorname {I_{\frac {4}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 40 i \, \operatorname {I_{-\frac {2}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 3 \, a^{2} b^{3} c x^{2} {\left (40 i \, \operatorname {I_{\frac {4}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 40 i \, \operatorname {I_{-\frac {2}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 3 \, a b^{4} c x {\left (20 i \, \operatorname {I_{\frac {4}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 20 i \, \operatorname {I_{-\frac {2}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 3 \, b^{5} c {\left (4 i \, \operatorname {I_{\frac {4}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 4 i \, \operatorname {I_{-\frac {2}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 2 \, \left (\frac {2}{3}\right )^{\frac {1}{3}} {\left (a^{4} x^{2} {\left (-9 i \, \operatorname {Y_{\frac {4}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 9 i \, \operatorname {Y_{-\frac {2}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + a^{3} b x {\left (-18 i \, \operatorname {Y_{\frac {4}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 18 i \, \operatorname {Y_{-\frac {2}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + a^{2} b^{2} {\left (-9 i \, \operatorname {Y_{\frac {4}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 9 i \, \operatorname {Y_{-\frac {2}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} + 9 \, \sqrt {a x + b} a^{3} \operatorname {Y_{\frac {1}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} \left (\frac {{\left (a x + b\right )}^{\frac {3}{2}}}{a}\right )^{\frac {4}{3}} \left (\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}\right )^{\frac {2}{3}} + 3 \, {\left (4 i \, a^{4} c x^{3} \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 12 i \, a^{3} b c x^{2} \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 12 i \, a^{2} b^{2} c x \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 4 i \, a b^{3} c \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} \sqrt {a x + b}}{3 \, {\left (12 \, \left (\frac {2}{3}\right )^{\frac {1}{3}} {\left (a^{3} x \operatorname {Y_{\frac {1}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + a^{2} b \operatorname {Y_{\frac {1}{3}}}(\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} \sqrt {a x + b} \left (\frac {{\left (a x + b\right )}^{\frac {3}{2}}}{a}\right )^{\frac {4}{3}} \left (\frac {2 i \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}\right )^{\frac {2}{3}} + {\left (8 i \, a^{4} c x^{4} \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 32 i \, a^{3} b c x^{3} \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 48 i \, a^{2} b^{2} c x^{2} \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 32 i \, a b^{3} c x \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a}) + 8 i \, b^{4} c \operatorname {I_{\frac {1}{3}}}(\frac {2 \, {\left (a x + b\right )}^{\frac {3}{2}}}{3 \, a})\right )} \sqrt {a x + b}\right )}}\right ], \text {\texttt {riccati}}\right ] \]