\[ \boxed { {x}^{3}{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +{x}^{2}{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( a{x}^{2}+bx+a \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 1.002127 (sec), leaf count = 56 \[ \left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^3+\unicode {f818}'(\unicode {f817}) \unicode {f817}^2+\left (a \unicode {f817}^2+b \unicode {f817}+a\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \} \]
Maple: cpu = 0.109 (sec), leaf count = 95 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it HeunD} \left ( 0,8\,a+4\, b,0,8\,a-4\,b,{\frac {1+x}{x-1}} \right ) +{\it \_C2}\,{\it HeunD} \left ( 0,8\,a+4\,b,0,8\,a-4\,b,{\frac {1+x}{x-1}} \right ) \int \!{ \frac {1}{x} \left ( {\it HeunD} \left ( 0,8\,a+4\,b,0,8\,a-4\,b,{\frac {1+x}{x-1}} \right ) \right ) ^{-2}}\,{\rm d}x \right \} \]