[next] [prev] [prev-tail] [tail] [up]
d2dx2y(x)=−ddxy(x)x−(bx2+a(x4+1))y(x)x4=0
Mathematica: cpu = 1.313167 (sec), leaf count = 58 \left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^4+\unicode {f818}'(\unicode {f817}) \unicode {f817}^3+\left (a \unicode {f817}^4+b \unicode {f817}^2+a\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \} \left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^4+\unicode {f818}'(\unicode {f817}) \unicode {f817}^3+\left (a \unicode {f817}^4+b \unicode {f817}^2+a\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}
Maple: cpu = 0.156 (sec), leaf count = 101 {y(x)=_C1HeunD(0,2a+b,0,2a−b,x2+1x2−1)+_C2HeunD(0,2a+b,0,2a−b,x2+1x2−1)∫1x(HeunD(0,2a+b,0,2a−b,x2+1x2−1))−2dx}
[next] [prev] [prev-tail] [front] [up]