\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) =-{\frac {Ay \left ( x \right ) }{ \left ( a{x}^{2}+bx+c \right ) ^{2}}}=0} \]
Mathematica: cpu = 1.410179 (sec), leaf count = 211 \[ \left \{\left \{y(x)\to \frac {c_2 \sqrt {a x^2+b x+c} \exp \left (-\frac {\sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \tan ^{-1}\left (\frac {2 a x+b}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c} \sqrt {1-\frac {4 A}{b^2-4 a c}}}+c_1 \sqrt {x (a x+b)+c} \exp \left (\frac {\sqrt {4 a c-b^2} \sqrt {1-\frac {4 A}{b^2-4 a c}} \tan ^{-1}\left (\frac {2 a x+b}{\sqrt {4 a c-b^2}}\right )}{\sqrt {b^2-4 a c}}\right )\right \}\right \} \]
Maple: cpu = 0.109 (sec), leaf count = 189 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,\sqrt {a{x}^{2}+bx+c} \left ( {1 \left ( i\sqrt {4\,ac-{b}^{2}}-2\,ax-b \right ) \left ( 2\,ax+b+i \sqrt {4\,ac-{b}^{2}} \right ) ^{-1}} \right ) ^{{\frac {a}{2}\sqrt {{ \frac {-4\,ac+{b}^{2}-4\,A}{{a}^{2}}}}{\frac {1}{\sqrt {-4\,ac+{b}^{2} }}}}}+{\it \_C2}\,\sqrt {a{x}^{2}+bx+c} \left ( {1 \left ( i\sqrt {4\,ac -{b}^{2}}-2\,ax-b \right ) \left ( 2\,ax+b+i\sqrt {4\,ac-{b}^{2}} \right ) ^{-1}} \right ) ^{-{\frac {a}{2}\sqrt {{\frac {-4\,ac+{b}^{2}- 4\,A}{{a}^{2}}}}{\frac {1}{\sqrt {-4\,ac+{b}^{2}}}}}} \right \} \]