\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) =-{\frac {b\cos \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{\sin \left ( x \right ) a}}-{\frac { \left ( c \left ( \cos \left ( x \right ) \right ) ^{2}+d\cos \left ( x \right ) +e \right ) y \left ( x \right ) }{a \left ( \sin \left ( x \right ) \right ) ^{2}}}=0} \]
Mathematica: cpu = 99.286108 (sec), leaf count = 1596424
Result too large for latex to process
Maple: cpu = 0.936 (sec), leaf count = 559 \[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( \sin \left ( x \right ) \right ) ^{-{\frac {a+b}{2\,a}}} \left ( \cos \left ( x \right ) +1 \right ) ^{{\frac {1}{4\,a} \left ( 2\,a+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}} \right ) }} \left ( -1+ \cos \left ( x \right ) \right ) ^{-{\frac {1}{4\,a} \left ( -2\,a+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}} \right ) }} {\mbox {$_2$F$_1$}({\frac {1}{4\,a} \left ( \sqrt {{a}^{2}+ \left ( -2\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}+2\,1434\sqrt {4\,ac-{b}^{2}}-\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}+2\,a \right ) },-{\frac {1}{4\,a} \left ( 2\,1434\sqrt {4\,ac-{b}^{2}}+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}-\sqrt {{a}^{2}+ \left ( -2\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}-2\,a \right ) };\,-{\frac {1}{2\,a} \left ( -2\,a+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}} \right ) };\,{\frac {\cos \left ( x \right ) }{2}}+{\frac {1}{2}})} +{\it \_C2}\, \left ( \sin \left ( x \right ) \right ) ^{-{\frac {a+b}{2 \,a}}} \left ( \cos \left ( x \right ) +1 \right ) ^{{\frac {1}{4\,a} \left ( 2\,a+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c-4\,d-4\,e \right ) a+{b} ^{2}} \right ) }} \left ( -1+\cos \left ( x \right ) \right ) ^{{\frac {1 }{4\,a} \left ( 2\,a+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}} \right ) }} {\mbox {$_2$F$_1$}({\frac {1}{4\,a} \left ( \sqrt {{a}^{2}+ \left ( -2\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}+2\,1434\sqrt {4\,ac-{b}^{2}}+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}+2\,a \right ) },{\frac {1}{4\,a} \left ( \sqrt {{a}^{2}+ \left ( -2\,b-4\,c-4\,d-4\,e \right ) a+{b}^{2}}-2\,1434\sqrt {4\,ac-{b}^{2}}+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}}+2\,a \right ) };\,{\frac {1}{2\,a} \left ( 2\,a+\sqrt {{a}^{2}+ \left ( -2\,b-4\,c+4\,d-4\,e \right ) a+{b}^{2}} \right ) };\,{\frac {\cos \left ( x \right ) }{2}}+{\frac {1}{2}})} \right \} \]