\[ \boxed { {\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}y \left ( x \right ) +y \left ( x \right ) a{x}^{3}-bx=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.171 (sec), leaf count = 2294 \[ \left \{ y \left ( x \right ) =\int \!1401400\,{b{x}^{3} \left ( 8\,{x}^{ 6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} a{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}-5\, {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} a+280\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} \right ) \left ( -1100\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{18} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{3} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} +5096\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} +1400\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^ {18} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} {a}^{3} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} -3185\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +1925\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} -3920\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} +400400\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x }^{12} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{2} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +1121120\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} -1401400\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +38500\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{12} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} {a}^{2}-156800\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{12} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{2}+178360\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}+134534400 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} a{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}-63063000 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} a-58858800\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{6}a{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}+784784000 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} \right ) ^{ -1}}\,{\rm d}x {\mbox {$_0$F$_2$}(\ ;\,{\frac {2}{3}},{\frac {5}{6}};\,-{\frac {{x}^{6}a}{216}})} +\int \!1401400\,{b{x}^{2} \left ( 5\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} a-14\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} a-560\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} \right ) \left ( -1100\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{18} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{3} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} +5096\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} +1400\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^ {18} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} {a}^{3} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} -3185\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +1925\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} -3920\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} +400400\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x }^{12} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{2} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +1121120\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} -1401400\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +38500\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{12} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} {a}^{2}-156800\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{12} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{2}+178360\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}+134534400 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} a{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}-63063000 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} a-58858800\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{6}a{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}+784784000 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} \right ) ^{ -1}}\,{\rm d}xx {\mbox {$_0$F$_2$}(\ ;\,{\frac {5}{6}},{\frac {7}{6}};\,-{\frac {{x}^{6}a}{216}})} +\int \!-2802800\,{bx \left ( 4\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} a-7\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} a-140\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} \right ) \left ( -1100\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{18} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{3} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} +5096\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} +1400\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^ {18} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} {a}^{3} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} -3185\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +1925\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} -3920\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{18}{a}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} +400400\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x }^{12} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{2} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +1121120\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} -1401400\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} +38500\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{12} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {{x}^{6}a}{216}})} {a}^{2}-156800\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{12} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {{x}^{6}a}{216}})} {a}^{2}+178360\, {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{12}{a}^{2} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}+134534400 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {{x}^{6}a}{216}})} a{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}-63063000 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})}{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {{x}^{6}a}{216}})} a-58858800\, {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {{x}^{6}a}{216}})} {x}^{6}a{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})}+784784000 \,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {{x}^{6}a}{216}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {{x}^{6}a}{216}})} \right ) ^{ -1}}\,{\rm d}x{x}^{2} {\mbox {$_0$F$_2$}(\ ;\,{\frac {7}{6}},{\frac {4}{3}};\,-{\frac {{x}^{6}a}{216}})} +{\it \_C1}\, {\mbox {$_0$F$_2$}(\ ;\,{\frac {2}{3}},{\frac {5}{6}};\,-{\frac {{x}^{6}a}{216}})} +{\it \_C2}\,x {\mbox {$_0$F$_2$}(\ ;\,{\frac {5}{6}},{\frac {7}{6}};\,-{\frac {{x}^{6}a}{216}})} +{\it \_C3}\,{x}^{2} {\mbox {$_0$F$_2$}(\ ;\,{\frac {7}{6}},{\frac {4}{3}};\,-{\frac {{x}^{6}a}{216}})} \right \} \]