\[ \boxed { 2\,x{\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}y \left ( x \right ) +3\,{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +axy \left ( x \right ) -b=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.219 (sec), leaf count = 2292 \[ \left \{ y \left ( x \right ) =\int \!350350\,{bx \left ( 8\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} a-5\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} a+70\,{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} \right ) \left ( 10192\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-7840\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-6370\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+3850\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+2800\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-2200\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+89180\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-78400\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+560560\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+19250\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-700700\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+200200\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-7357350\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} a+16816800\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} a-7882875\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} a+24524500\,{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} \right ) ^{- 1}}\,{\rm d}x {\mbox {$_0$F$_2$}(\ ;\,{\frac {2}{3}},{\frac {5}{6}};\,-{\frac {a{x}^{3}}{54}})} +\int \!700700\,{b \left ( 7\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} a-4\,{x}^{3}{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} a+35\,{\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} \right ) \left ( 10192\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-7840\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-6370\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+3850\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+2800\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-2200\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+89180\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-78400\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+560560\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+19250\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-700700\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+200200\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-7357350\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} a+16816800\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} a-7882875\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} a+24524500\,{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} \right ) ^{- 1}}\,{\rm d}x {\mbox {$_0$F$_2$}(\ ;\,{\frac {7}{6}},{\frac {4}{3}};\,-{\frac {a{x}^{3}}{54}})} x-\int \!350350\,{b\sqrt {x} \left ( 14\, {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})}{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} a-5\,{\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} a{x}^{3}+140\, {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} \right ) \left ( 10192\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-7840\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-6370\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+3850\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+2800\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{3}-2200\,{x}^{9} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {a}^{3}+89180\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,8/3,{\frac {17}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-78400\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {17}{6}},{\frac {19}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+560560\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+19250\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {19}{6}},10/3;\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-700700\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}+200200\,{x}^{6} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} {a}^{2}-7357350\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/3,{\frac {11}{6}};\,-{\frac {a{x}^{3}}{54}})} a+16816800\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {11}{6}},{\frac {13}{6}};\,-{\frac {a{x}^{3}}{54}})} a-7882875\,{x}^{3} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,{\frac {13}{6}},7/3;\,-{\frac {a{x}^{3}}{54}})} a+24524500\,{\mbox {$_0$F$_2$}(\ ;\,7/6,4/3;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,5/6,7/6;\,-{\frac {a{x}^{3}}{54}})} {\mbox {$_0$F$_2$}(\ ;\,2/3,5/6;\,-{\frac {a{x}^{3}}{54}})} \right ) ^{- 1}}\,{\rm d}x\sqrt {x} {\mbox {$_0$F$_2$}(\ ;\,{\frac {5}{6}},{\frac {7}{6}};\,-{\frac {a{x}^{3}}{54}})} +{\it \_C1}\, {\mbox {$_0$F$_2$}(\ ;\,{\frac {2}{3}},{\frac {5}{6}};\,-{\frac {a{x}^{3}}{54}})} +{\it \_C2}\, {\mbox {$_0$F$_2$}(\ ;\,{\frac {7}{6}},{\frac {4}{3}};\,-{\frac {a{x}^{3}}{54}})} x+{\it \_C3}\,\sqrt {x} {\mbox {$_0$F$_2$}(\ ;\,{\frac {5}{6}},{\frac {7}{6}};\,-{\frac {a{x}^{3}}{54}})} \right \} \]