\[ \boxed { {x}^{2}{\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}y \left ( x \right ) - \left ( {x}^{2}-2\,x \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) - \left ( {x}^{2}+{\nu }^{2}-1/4 \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( {x}^{2}-2\,x+{\nu }^{2}-1/4 \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.232530 (sec), leaf count = 97 \[ \left \{\left \{y(x)\to \frac {c_3 e^x x^{\nu +\frac {1}{2}} \Gamma \left (\nu +\frac {1}{2}\right ) \, _1\tilde {F}_1\left (\nu +\frac {1}{2};2 \nu +1;-2 x\right )}{\Gamma \left (\frac {3}{2}-\nu \right )}+c_2 2^{-\nu -\frac {1}{2}} e^x G_{2,3}^{2,1}\left (2 x\left | \begin {array}{c} 1,0 \\ \frac {1}{2}-\nu ,\nu +\frac {1}{2},0 \\ \end {array} \right .\right )+c_1 e^x\right \}\right \} \]
Maple: cpu = 0.218 (sec), leaf count = 25 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{x}}+{\it \_C2}\, \sqrt {x}{{\sl I}_{\nu }\left (x\right )}+{\it \_C3}\,\sqrt {x}{{\sl K}_{ \nu }\left (x\right )} \right \} \]