\[ \boxed { {x}^{2}{\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}y \left ( x \right ) -2\, \left ( {x}^{2}-x \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) + \left ( {x}^{2}-2\,x+1/4-{\nu }^{2} \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) + \left ( {\nu }^{2}-1/4 \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.187024 (sec), leaf count = 86 \[ \left \{\left \{y(x)\to \frac {c_3 e^x x^{\nu +\frac {1}{2}} \Gamma \left (\nu +\frac {1}{2}\right ) \, _1\tilde {F}_1\left (\nu +\frac {1}{2};2 \nu +1;-x\right )}{\Gamma \left (\frac {3}{2}-\nu \right )}+c_2 e^x G_{2,3}^{2,1}\left (x\left | \begin {array}{c} 1,0 \\ \frac {1}{2}-\nu ,\nu +\frac {1}{2},0 \\ \end {array} \right .\right )+c_1 e^x\right \}\right \} \]
Maple: cpu = 0.203 (sec), leaf count = 37 \[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{x}}+{\it \_C2}\,{ {\rm e}^{{\frac {x}{2}}}}\sqrt {x}{{\sl I}_{\nu }\left ({\frac {x}{2}} \right )}+{\it \_C3}\,{{\rm e}^{{\frac {x}{2}}}}\sqrt {x}{{\sl K}_{\nu }\left ({\frac {x}{2}}\right )} \right \} \]