\[ \boxed { {x}^{2}{\it d4y} \left ( x \right ) -2\, \left ( {\nu }^{2}{x}^{2}+6 \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +{\nu }^{2} \left ( {\nu }^{2}{x}^{2}+4 \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.443556 (sec), leaf count = 110 \[ \left \{\left \{y(x)\to \frac {c_3 (1-x) e^{-\nu x} \left (\nu ^2 x^2+\nu ^2 x+\nu ^2+6 \nu x+6 \nu +15\right )}{x}+\frac {c_4 (1-x) e^{\nu x} \left (\nu ^2 x^2+\nu ^2 x+\nu ^2-6 \nu x-6 \nu +15\right )}{x}+\frac {c_1 e^{-\nu x}}{x}+\frac {c_2 e^{\nu x}}{x}\right \}\right \} \]
Maple: cpu = 0.110 (sec), leaf count = 63 \[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}\,{{\rm e}^{\nu \,x}}}{x }}+{\frac {{\it \_C2}\,{{\rm e}^{-\nu \,x}}}{x}}+{\it \_C3}\,{{\rm e}^{ \nu \,x}} \left ( {\nu }^{2}{x}^{2}-6\,\nu \,x+15 \right ) +{\it \_C4}\,{ {\rm e}^{-\nu \,x}} \left ( {\nu }^{2}{x}^{2}+6\,\nu \,x+15 \right ) \right \} \]