6.39   ODE No. 1572

(x21)2d4y(x)+10x(x21)d3dx3y(x)+(24x282(μ(μ+1)+ν(ν+1))(x21))d2dx2y(x)6x(μ(μ+1)+ν(ν+1)2)ddxy(x)+((μ(μ+1)ν(ν+1))22μ(μ+1)2ν(ν+1))y(x)=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 93.272844 (sec), leaf count = 174 \left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(\mu -\nu -1) (\mu -\nu +1) (\mu +\nu ) (\mu +\nu +2) \unicode {f818}(\unicode {f817})-6 \unicode {f817} \left (\mu ^2+\mu +\nu ^2+\nu -2\right ) \unicode {f818}'(\unicode {f817})-2 \left (-12 \unicode {f817}^3+\mu ^2 \unicode {f817}^2+\nu ^2 \unicode {f817}^2+\mu \unicode {f817}^2+\nu \unicode {f817}^2-\mu ^2-\nu ^2-\mu -\nu +4\right ) \unicode {f818}''(\unicode {f817})+\left (10 \unicode {f817}^3-10 \unicode {f817}\right ) \unicode {f818}^{(3)}(\unicode {f817})+\left (\unicode {f817}^4-2 \unicode {f817}^2+1\right ) \unicode {f818}^{(4)}(\unicode {f817})=0,\unicode {f818}(0)=c_1,\unicode {f818}'(0)=c_2,\unicode {f818}''(0)=c_3,\unicode {f818}^{(3)}(0)=c_4\right \},\langle \langle \rangle \rangle \right )(x)\right \}\right \}

Maple: cpu = 0.203 (sec), leaf count = 37 {y(x)=_C1LegendreP(ν,x)LegendreP(μ,x)+_C2LegendreP(ν,x)LegendreQ(μ,x)+_C3LegendreQ(ν,x)LegendreP(μ,x)+_C4LegendreQ(ν,x)LegendreQ(μ,x)}