\[ \boxed { x \left ( a{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +b{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +c{\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}y \left ( x \right ) +e{\it d4y} \left ( x \right ) \right ) y \left ( x \right ) =0} \]
Mathematica: cpu = 0.247031 (sec), leaf count = 214 \[ \left \{\{y(x)\to 0\},\left \{y(x)\to \frac {c_1 e^{x \text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,1\right ]}}{\text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,1\right ]}+\frac {c_2 e^{x \text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,2\right ]}}{\text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,2\right ]}+\frac {c_3 e^{x \text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,3\right ]}}{\text {Root}\left [\text {$\#$1}^3+\frac {\text {$\#$1}^2 c}{e}+\frac {\text {$\#$1} b}{e}+\frac {a}{e}\& ,3\right ]}+c_4\right \}\right \} \]
Maple: cpu = 0.016 (sec), leaf count = 806 \[ \left \{ y \left ( x \right ) =0,y \left ( x \right ) ={\it \_C1}+{\it \_C2}\,{{\rm e}^{-{\frac {x}{12\,e} \left ( i \left ( 12\,\sqrt {3} \sqrt {27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b}^{2}{c}^ {2}}e-108\,a{e}^{2}+36\,bce-8\,{c}^{3} \right ) ^{{\frac {2}{3}}}\sqrt {3}+12\,i\sqrt {3}be-4\,i\sqrt {3}{c}^{2}+ \left ( 12\,\sqrt {3}\sqrt { 27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b}^{2}{c}^{2}}e- 108\,a{e}^{2}+36\,bce-8\,{c}^{3} \right ) ^{{\frac {2}{3}}}+4\,c\sqrt [ 3]{12\,\sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4\,{b}^ {3}e-{b}^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bce-8\,{c}^{3}}-12\,be+4\,{c}^ {2} \right ) {\frac {1}{\sqrt [3]{12\,\sqrt {3}\sqrt {27\,{a}^{2}{e}^{2 }-18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b}^{2}{c}^{2}}e-108\,a{e}^{2}+36\, bce-8\,{c}^{3}}}}}}}+{\it \_C3}\,{{\rm e}^{{\frac {x}{12\,e} \left ( i \left ( 12\,\sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4 \,{b}^{3}e-{b}^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bce-8\,{c}^{3} \right ) ^ {{\frac {2}{3}}}\sqrt {3}+12\,i\sqrt {3}be-4\,i\sqrt {3}{c}^{2}- \left ( 12\,\sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4 \,{b}^{3}e-{b}^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bce-8\,{c}^{3} \right ) ^ {{\frac {2}{3}}}-4\,c\sqrt [3]{12\,\sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}- 18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b}^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bc e-8\,{c}^{3}}+12\,be-4\,{c}^{2} \right ) {\frac {1}{\sqrt [3]{12\, \sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b }^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bce-8\,{c}^{3}}}}}}}+{\it \_C4}\,{ {\rm e}^{{\frac {x}{6\,e} \left ( \left ( 12\,\sqrt {3}\sqrt {27\,{a}^{ 2}{e}^{2}-18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b}^{2}{c}^{2}}e-108\,a{e}^ {2}+36\,bce-8\,{c}^{3} \right ) ^{{\frac {2}{3}}}-2\,c\sqrt [3]{12\, \sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}-18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b }^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bce-8\,{c}^{3}}-12\,be+4\,{c}^{2} \right ) {\frac {1}{\sqrt [3]{12\,\sqrt {3}\sqrt {27\,{a}^{2}{e}^{2}- 18\,abce+4\,a{c}^{3}+4\,{b}^{3}e-{b}^{2}{c}^{2}}e-108\,a{e}^{2}+36\,bc e-8\,{c}^{3}}}}}}} \right \} \]