\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) -{\frac {1}{{x}^{3/2}}h \left ( {\frac {y \left ( x \right ) }{\sqrt {x}}} \right ) }=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.203 (sec), leaf count = 92 \[ \left \{ y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) -2\,\int ^{{\it \_Z}}\!{\frac {1}{\sqrt {{\it \_C1}+8\,\int \!h \left ( {\it \_g} \right ) \,{\rm d}{\it \_g}+{{\it \_g}}^{2}}}}{d{ \it \_g}}+2\,{\it \_C2} \right ) \sqrt {x},y \left ( x \right ) ={\it RootOf} \left ( -\ln \left ( x \right ) +2\,\int ^{{\it \_Z}}\!{\frac {1 }{\sqrt {{\it \_C1}+8\,\int \!h \left ( {\it \_g} \right ) \,{\rm d}{ \it \_g}+{{\it \_g}}^{2}}}}{d{\it \_g}}+2\,{\it \_C2} \right ) \sqrt {x },y \left ( x \right ) ={\it RootOf} \left ( {\it \_Z}\,{x}^{{\frac {3}{2 }}}+4\,h \left ( {\frac {{\it \_Z}}{\sqrt {x}}} \right ) {x}^{2} \right ) \right \} \]