[next] [prev] [prev-tail] [tail] [up]
d2dx2y(x)−(3n+4)ddxy(x)n−2(n+1)(n+2)y(x)n2((y(x))nn+1−1)=0
Mathematica: cpu = 118.097997 (sec), leaf count = 50 DSolve[−2(n+1)(n+2)y(x)(y(x)nn+1−1)n2−(3n+4)y′(x)n+y″(x)=0,y(x),x]
Maple: cpu = 3.526 (sec), leaf count = 116 {y(x)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)−1n2(2_ann+1_an2+3_b(_a)n2+6_ann+1_an−2_an2+4_b(_a)n+4_ann+1_a−6_an−4_a)=0},{_a=y(x),_b(_a)=ddxy(x)},{x=∫(_b(_a))−1d_a+_C1,y(x)=_a}])}
[next] [prev] [prev-tail] [front] [up]