\[ \boxed { {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +y \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) - \left ( y \left ( x \right ) \right ) ^{3}+ay \left ( x \right ) =0} \]
Mathematica: cpu = 100.138216 (sec), leaf count = 28 \[ \text {DSolve}\left [a y(x)+y''(x)+y(x) y'(x)-y(x)^3=0,y(x),x\right ] \]
Maple: cpu = 0.967 (sec), leaf count = 8191 \[ \left \{ \int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+ 63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( 126\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a }}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [ 3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1} }{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{ {\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}-126\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1 }}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\, {{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2 }-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126 \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}} ^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3 }+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{ \it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^ {2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}- 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}} ^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{ a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3 \,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+ 63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a }^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+ 80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt { 5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{ {\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{ \it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6 }+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{ a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a }^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{ 6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2} +80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126-4\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{ \it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189 \,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4 \,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1 }}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{ \frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2} {a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{ 2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0, \int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}-{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a }}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [ 3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1} }{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{ {\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt { {\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a} }^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6 }-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{ \it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{ {\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt { 5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{ {\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{ 3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{ 3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126+4\,i \sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a- 12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189 \,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4 \,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1 }}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{ \frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2} {a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{ 2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0, \int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( 126\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a }}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [ 3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1} }{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{ {\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}-126\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1 }}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\, {{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2 }-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126 \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}} ^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3 }+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{ \it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^ {2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}- 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}} ^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{ a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3 \,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+ 63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a }^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+ 80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt { 5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{ {\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{ \it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6 }+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{ a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a }^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{ 6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2} +80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126-4\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{ \it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189 \,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4 \,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1 }}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{ \frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2} {a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{ 2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0, \int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( {\frac { \left ( -{\frac {1}{2}}+{\frac {i}{2}}\sqrt {3} \right ) ^{3}}{2} \left ( -63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a }}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [ 3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1} }{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{ {\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt { {\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a} }^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6 }-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{ \it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{ {\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt { 5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{ {\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{ 3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{ 3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}-126+4\,i \sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a- 12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189 \,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4 \,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1 }}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{ \frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2} {a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{ 2}}}}} \right ) \right ) }+63 \right ) }{d{\it \_a}}-x-{\it \_C2}=0, \int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( 63\,{\frac {1}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}\sqrt [3]{ \left ( 4\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}} ^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3 }+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{ \it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^ {2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}- 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}} ^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{ a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3 \,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}- 63\,{({{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a }^{3}){\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+ 80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt { 5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{ {\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{ \it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6 }+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{ a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a }^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{ 6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2} +80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) }{d{\it \_a}}-x -{\it \_C2}=0,\int ^{y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}} ^{2}+63\,a} \left ( -{\frac {63}{-2\,{{\it \_a}}^{6}+6\,{{\it \_a}}^{4} a-6\,{{\it \_a}}^{2}{a}^{2}+160\,{{\it \_C1}}^{3}+2\,{a}^{3}}\sqrt [3] { \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189 \,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{2}{\frac {1}{\sqrt [3]{ \left ( 4 \,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1 }}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{ \frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2} {a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{ 2}}}}}-2\,i\sqrt {3} \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{\it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3} }\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}} ^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3 }+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{ \it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^ {2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{ \it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a} }^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^ {6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3} +{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{ 4}a+189\,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}} \right ) \right ) }{d{\it \_a}}-x-{\it \_C2}=0,\int ^ {y \left ( x \right ) }\!{\frac {1}{-63\,{{\it \_a}}^{2}+63\,a} \left ( - {\frac {63}{-2\,{{\it \_a}}^{6}+6\,{{\it \_a}}^{4}a-6\,{{\it \_a}}^{2} {a}^{2}+160\,{{\it \_C1}}^{3}+2\,{a}^{3}}\sqrt [3]{ \left ( 4\,\sqrt {5 }\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\, {{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3 }}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1 }}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\, {{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\, \sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4 }a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1} \,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2 }-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{ \frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189\,{{\it \_a}}^{2}{ a}^{2}-63\,{a}^{3}}{2}{\frac {1}{\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt { {\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a} }^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6 }-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{ \it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{ {\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt { 5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{ {\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{a}^{ 3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a}}^{2}{a}^{2}-{a}^{ 3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}}}+2\,i\sqrt {3 } \left ( {\frac {63}{-4\,{{\it \_a}}^{6}+12\,{{\it \_a}}^{4}a-12\,{{ \it \_a}}^{2}{a}^{2}+320\,{{\it \_C1}}^{3}+4\,{a}^{3}}\sqrt [3]{ \left ( 4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{ -{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{ \it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5} \sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{ \it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2}{a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{ 6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+ {a}^{3}}}}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{ {\it \_a}}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{2}}}+{\frac {63\,{{\it \_a}}^{6}-189\,{{\it \_a}}^{4}a+189 \,{{\it \_a}}^{2}{a}^{2}-63\,{a}^{3}}{4}{\frac {1}{\sqrt [3]{ \left ( 4 \,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{6}-12\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1 }}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{4}a+12\,\sqrt {5}\sqrt {{ \frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{\it \_a}}^{4}a-3\,{{\it \_a}} ^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}}}}{\it \_C1}\,{{\it \_a}}^{2} {a}^{2}-4\,\sqrt {5}\sqrt {{\frac {{\it \_C1}}{-{{\it \_a}}^{6}+3\,{{ \it \_a}}^{4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3}} }}{\it \_C1}\,{a}^{3}+{{\it \_a}}^{6}-3\,{{\it \_a}}^{4}a+3\,{{\it \_a }}^{2}{a}^{2}-{a}^{3} \right ) \left ( -{{\it \_a}}^{6}+3\,{{\it \_a}}^ {4}a-3\,{{\it \_a}}^{2}{a}^{2}+80\,{{\it \_C1}}^{3}+{a}^{3} \right ) ^{ 2}}}}} \right ) \right ) }{d{\it \_a}}-x-{\it \_C2}=0 \right \} \]