\[ \boxed { x{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +2\,{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +x{{\rm e}^{y \left ( x \right ) }}=0} \]
Mathematica: cpu = 0.400051 (sec), leaf count = 25 \[ \text {DSolve}\left [x y''(x)+2 y'(x)+x e^{y(x)}=0,y(x),x\right ] \]
Maple: cpu = 0.405 (sec), leaf count = 84 \[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a}-2\, \int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}-2\,{\it \_C1},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( { \it \_a} \right ) = \left ( {{\rm e}^{{\it \_a}}}-2 \right ) \left ( { \it \_b} \left ( {\it \_a} \right ) \right ) ^{3}+ \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2} \right \} , \left \{ {\it \_a}=y \left ( x \right ) +2\,\ln \left ( x \right ) ,{\it \_b} \left ( {\it \_a } \right ) = \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +2 \right ) ^{-1} \right \} , \left \{ x={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},y \left ( x \right ) = {\it \_a}-2\,\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}-2\,{\it \_C1} \right \} ] \right ) \right \} \]