\[ \boxed { xy \left ( x \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) -4\,x \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+4\,y \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =0} \]
Mathematica: cpu = 0.046506 (sec), leaf count = 21 \[ \left \{\left \{y(x)\to \frac {c_2 x}{\sqrt [3]{c_1 x^3+1}}\right \}\right \} \]
Maple: cpu = 1.529 (sec), leaf count = 84 \[ \left \{ y \left ( x \right ) = \left ( -{\frac {1}{2}{\frac {1}{\sqrt [3 ]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}}-{{\frac {i}{2}}\sqrt {3}{ \frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}} \right ) x,y \left ( x \right ) = \left ( -{\frac {1}{2}{\frac {1}{\sqrt [3]{-3\,{ \it \_C2}\,{x}^{3}+{\it \_C1}}}}}+{{\frac {i}{2}}\sqrt {3}{\frac {1}{ \sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}}} \right ) x,y \left ( x \right ) ={x{\frac {1}{\sqrt [3]{-3\,{\it \_C2}\,{x}^{3}+{\it \_C1}}}} } \right \} \]