\[ \boxed { a{x}^{2}y \left ( x \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +b{x}^{2} \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+cxy \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +d \left ( y \left ( x \right ) \right ) ^{2}=0} \]
Mathematica: cpu = 1.339670 (sec), leaf count = 93 \[ \left \{\left \{y(x)\to c_2 \exp \left (-\frac {\log (x) \left (a \sqrt {\frac {a^2-2 a c-4 a d-4 b d+c^2}{a^2}}-a+c\right )-2 a \log \left (x^{\sqrt {\frac {a^2-2 a c-4 a d-4 b d+c^2}{a^2}}}+c_1\right )}{2 (a+b)}\right )\right \}\right \} \]
Maple: cpu = 1.653 (sec), leaf count = 155 \[ \left \{ y \left ( x \right ) ={x}^{-{\frac {1}{2\,a+2\,b}\sqrt {{a}^{2} -2\,ac-4\,da-4\,db+{c}^{2}}}}{x}^{{\frac {a}{2\,a+2\,b}}}{x}^{-{\frac {c}{2\,a+2\,b}}} \left ( {({a}^{2}-2\,ac-4\,da-4\,db+{c}^{2}) \left ( {x }^{{\frac {1}{a}\sqrt {{a}^{2}-2\,ac-4\,da-4\,db+{c}^{2}}}}{\it \_C1} \,a+{x}^{{\frac {1}{a}\sqrt {{a}^{2}-2\,ac-4\,da-4\,db+{c}^{2}}}}{\it \_C1}\,b-{\it \_C2}\,a-{\it \_C2}\,b \right ) ^{-2}} \right ) ^{-{\frac {a}{2\,a+2\,b}}} \right \} \]