\[ \boxed { \left ( \left ( y \left ( x \right ) \right ) ^{2}+{x}^{2} \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) -2\, \left ( \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+1 \right ) \left ( x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) \right ) =0} \]
Mathematica: cpu = 0.363546 (sec), leaf count = 95 \[ \left \{\left \{y(x)\to \frac {1}{2} \left (-\sqrt {4 x \left (e^{c_2}-x\right )+e^{2 c_2} \cot ^2\left (c_1\right )}-e^{c_2} \cot \left (c_1\right )\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {4 x \left (e^{c_2}-x\right )+e^{2 c_2} \cot ^2\left (c_1\right )}-e^{c_2} \cot \left (c_1\right )\right )\right \}\right \} \]
Maple: cpu = 1.810 (sec), leaf count = 83 \[ \left \{ y \left ( x \right ) ={\frac {1}{4\,{\it \_C2}} \left ( {\it \_C1}+1-\sqrt {8\,i{\it \_C2}\,{\it \_C1}\,x-16\,{{\it \_C2}}^{2}{x}^{ 2}+{{\it \_C1}}^{2}-8\,i{\it \_C2}\,x+2\,{\it \_C1}+1} \right ) },y \left ( x \right ) ={\frac {1}{4\,{\it \_C2}} \left ( {\it \_C1}+1+ \sqrt {8\,i{\it \_C2}\,{\it \_C1}\,x-16\,{{\it \_C2}}^{2}{x}^{2}+{{ \it \_C1}}^{2}-8\,i{\it \_C2}\,x+2\,{\it \_C1}+1} \right ) } \right \} \]