\[ \boxed { h \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +j \left ( y \left ( x \right ) \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +f=0} \]
Mathematica: cpu = 0.040505 (sec), leaf count = 27 \[ \text {DSolve}\left [f(x)+y''(x) h\left (y'(x)\right )+j(y(x)) y'(x)=0,y(x),x\right ] \]
Maple: cpu = 0.702 (sec), leaf count = 50 \[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_f} \left ( {\it \_b} \right ) ,[ \left \{ \int ^{{\it \_f} \left ( {\it \_b} \right ) }\!j \left ( {\it \_a} \right ) {d{\it \_a}}+\int ^{{\frac {\rm d}{{\rm d}{\it \_b}}}{\it \_f} \left ( {\it \_b} \right ) }\!h \left ( {\it \_a} \right ) {d{\it \_a}}+{\it \_b}\,f+{\it \_C1}=0 \right \} , \left \{ {\it \_b}=x,{\it \_f} \left ( {\it \_b} \right ) =y \left ( x \right ) \right \} , \left \{ x={\it \_b},y \left ( x \right ) = {\it \_f} \left ( {\it \_b} \right ) \right \} ] \right ) \right \} \]