\[ \boxed { {x}^{2}{\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}y \left ( x \right ) +x \left ( -1+y \left ( x \right ) \right ) {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) +x \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+ \left ( 1-y \left ( x \right ) \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =0} \]
Mathematica: cpu = 0.166521 (sec), leaf count = 286 \[ \left \{\left \{y(x)\to \frac {2 x \left (c_3 \left (J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-\frac {1}{4} i \sqrt {c_1} x \left (J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}-1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}+1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )\right )\right )+Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-\frac {1}{4} i \sqrt {c_1} x \left (Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}-1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )-Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}+1}\left (-\frac {1}{2} i x \sqrt {c_1}\right )\right )\right )}{c_3 x J_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )+x Y_{\frac {\sqrt {c_2+2}}{\sqrt {2}}}\left (-\frac {1}{2} i x \sqrt {c_1}\right )}\right \}\right \} \]
Maple: cpu = 0.421 (sec), leaf count = 190 \[ \left \{ \ln \left ( x \right ) +2\,\int ^{y \left ( x \right ) }\! \left ( 2\, \left ( {\it RootOf} \left ( -2\,{{\sl Y}_{1/2\,\sqrt {4+{ \it \_C1}}}\left (1/2\,\sqrt {2}{\it \_Z}\right )}\sqrt {4+{\it \_C1}}{ \it \_C2}+2\,{{\sl Y}_{1/2\,\sqrt {4+{\it \_C1}}}\left (1/2\,\sqrt {2}{ \it \_Z}\right )}{\it \_C2}\,{\it \_h}-4\,{{\sl Y}_{1/2\,\sqrt {4+{\it \_C1}}}\left (1/2\,\sqrt {2}{\it \_Z}\right )}{\it \_C2}+2\,{{\sl Y}_{1/ 2\,\sqrt {4+{\it \_C1}}+1}\left (1/2\,\sqrt {2}{\it \_Z}\right )}\sqrt { 2}{\it \_C2}\,{\it \_Z}+2\,{{\sl J}_{1/2\,\sqrt {4+{\it \_C1}}+1 }\left (1/2\,\sqrt {2}{\it \_Z}\right )}\sqrt {2}{\it \_Z}-2\,{{\sl J}_{ 1/2\,\sqrt {4+{\it \_C1}}}\left (1/2\,\sqrt {2}{\it \_Z}\right )}\sqrt { 4+{\it \_C1}}+2\,{{\sl J}_{1/2\,\sqrt {4+{\it \_C1}}}\left (1/2\,\sqrt {2}{\it \_Z}\right )}{\it \_h}-4\,{{\sl J}_{1/2\,\sqrt {4+{\it \_C1}} }\left (1/2\,\sqrt {2}{\it \_Z}\right )} \right ) \right ) ^{2}+{{\it \_h }}^{2}-{\it \_C1}-4\,{\it \_h} \right ) ^{-1}{d{\it \_h}}-{\it \_C3}=0 \right \} \]