11.6   ODE No. 1918

{ddtx(t)=x(t)(y(t))2+x(t)+y(t),ddty(t)=(x(t))2y(t)x(t)y(t)}

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 0.090511 (sec), leaf count = 47 DSolve[{x(t)=x(t)y(t)2+x(t)+y(t),y(t)=x(t)2y(t)x(t)y(t)},{x(t),y(t)},t]

Maple: cpu = 1.373 (sec), leaf count = 245 {[{x(t)=0},{y(t)=0}],[{x(t)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)12_a2(4_b(_a)_a44_a5+2_a(_b(_a))24_a2_b(_a)+3_a3_b(_a)+_a4_b(_a)_a7+4_a8+8_a4(_b(_a))216_a5_b(_a)+9_a64(_b(_a))3_a+12(_b(_a))2_a214_a3_b(_a)+6_a4+(_b(_a))22_a_b(_a)+_a2)=0},{_a=x(t),_b(_a)=ddtx(t)},{t=(_b(_a))1d_a+_C1,x(t)=_a}])},{y(t)=2(x(t))4+2(x(t))3ddtx(t)(d2dt2x(t))x(t)+(x(t))22x(t)ddtx(t)+(ddtx(t))2(x(t))3x(t)+ddtx(t)}]}