11.8   ODE No. 1920

{ddtx(t)=y(t)+x(t)((x(t))2+(y(t))21),ddty(t)=x(t)+y(t)((x(t))2+(y(t))21)}

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 0.081510 (sec), leaf count = 52 DSolve[{x(t)=x(t)(x(t)2+y(t)21)y(t),y(t)=y(t)(x(t)2+y(t)21)+x(t)},{x(t),y(t)},t]

Maple: cpu = 2.294 (sec), leaf count = 250 {[{x(t)=0},{y(t)=0}],[{x(t)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)12_a3(6(_b(_a))2_a2+4_a3_b(_a)4_a4+6_a_b(_a)+4_a2+164_a6(_b(_a))264_b(_a)_a716_a8+64_a3(_b(_a))3+128_a4(_b(_a))2+48_a5_b(_a)+48(_b(_a))2_a2+64_a3_b(_a)+16_a4+12_a_b(_a)+8_a2+1)=0},{_a=x(t),_b(_a)=ddtx(t)},{t=(_b(_a))1d_a+_C1,x(t)=_a}])},{y(t)=(d2dt2x(t))(x(t))2+2(x(t))32(x(t))2ddtx(t)3x(t)(ddtx(t))2x(t)ddtx(t)2(x(t))2+4x(t)ddtx(t)+1}]}