11.22   ODE No. 1934

{ddtx(t)=1/2(x(t))21/24y(t),ddty(t)=2x(t)y(t)3z(t),ddtz(t)=3x(t)z(t)1/6(y(t))2}

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 72.632223 (sec), leaf count = 66 DSolve[{x(t)=x(t)22y(t)24,y(t)=2x(t)y(t)3z(t),z(t)=3x(t)z(t)y(t)26},{x(t),y(t),z(t)},t]

Maple: cpu = 0.904 (sec), leaf count = 376 {[{y(t)=0},{x(t)=2(2_C1t)1},{z(t)=0}],[{y(t)=256(_C1t+_C2)4},{x(t)=12y(t)(ddty(t)33(y(t))32),x(t)=12y(t)(ddty(t)+33(y(t))32)},{z(t)=2x(t)y(t)3ddty(t)3}],[{y(t)=ODESolStruc(e_g(_f)d_f+_C2,[{dd_f_g(_f)=15(_g(_f))320_f2_f2(3_f2_g(_f)+12_f5_g(_f))(_g(_f)_f+4)2(_g(_f))3+(_g(_f))22+_g(_f)_f},{_f=ddty(t)(y(t))32,_g(_f)=2(y(t))3/2(2(d2dt2y(t))y(t)ddty(t)+3ddty(t))1},{t=_g(_f)_f1e_g(_f)d_f+_C2d_f+_C1,y(t)=e_g(_f)d_f+_C2}])},{x(t)=2(d3dt3y(t))y(t)+3(d2dt2y(t))ddty(t)12(d2dt2y(t))y(t)+15(ddty(t))2},{z(t)=4(d3dt3y(t))(y(t))2+18(d2dt2y(t))y(t)ddty(t)15(ddty(t))336(d2dt2y(t))y(t)+45(ddty(t))2}]}