\[ \boxed { y \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +ay \left ( x \right ) +x=0} \]
Mathematica: cpu = 0.096512 (sec), leaf count = 70 \[ \text {Solve}\left [\frac {1}{2} \log \left (\frac {a y(x)}{x}+\frac {y(x)^2}{x^2}+1\right )-\frac {a \tan ^{-1}\left (\frac {a+\frac {2 y(x)}{x}}{\sqrt {4-a^2}}\right )}{\sqrt {4-a^2}}=c_1-\log (x),y(x)\right ] \]
Maple: cpu = 0.218 (sec), leaf count = 88 \[ \left \{ y \left ( x \right ) ={\it RootOf} \left ( {{\it \_Z}}^{2}-{ {\rm e}^{{\it RootOf} \left ( {x}^{2} \left ( \left ( \tanh \left ( { \frac {2\,{\it \_C1}+{\it \_Z}+2\,\ln \left ( x \right ) }{2\,a}\sqrt { {a}^{2}-4}} \right ) \right ) ^{2}{a}^{2}-4\, \left ( \tanh \left ( 1/2\, {\frac {\sqrt {{a}^{2}-4} \left ( 2\,{\it \_C1}+{\it \_Z}+2\,\ln \left ( x \right ) \right ) }{a}} \right ) \right ) ^{2}-{a}^{2}-4\,{ {\rm e}^{{\it \_Z}}}+4 \right ) \right ) }}+1+{\it \_Z}\,a \right ) x \right \} \]