3.231   ODE No. 231

(ay(x)+bx+c)ddxy(x)+αy(x)+βx+γ=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 2.446311 (sec), leaf count = 252 Solve[(αb)2(log((ay(x)+bx+c)2((α(bx+c)a(βx+γ))(a(αb)y(x)+a(βx+γ)+b2(x)bc)(ay(x)+bx+c)2+aβαb)(α(bx+c)a(βx+γ))2)2tan1(2(a(βx+γ)α(bx+c))ay(x)+bx+c+αb(αb)4(aβαb)(αb)21)4(aβαb)(αb)21)2(aβαb)=(αb)2log(a(βx+γ)α(bx+c))aβαb+c1,y(x)]

Maple: cpu = 0.156 (sec), leaf count = 206 {y(x)=1aβ+bα(bγ+βc+x(aβbα)+aγαc2a(4aβα22bαb2tan(RootOf(4aβα22bαb2ln((aβxαbx+aγαc)2(4aβ(tan(_Z))2α2(tan(_Z))22αb(tan(_Z))2b2(tan(_Z))2+4aβα22bαb2)4a)+2_C14aβα22bαb2+2_Zα2_Zb))+α+b))}