\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +a \left ( y \left ( x \right ) \right ) ^{2}-b{x}^{\nu }=0} \]
Mathematica: cpu = 0.011501 (sec), leaf count = 277 \[ \left \{\left \{y(x)\to -\frac {\sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}} \left (c_1 J_{\frac {\nu +1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu }{2}+1}}{\nu +2}\right )-c_1 J_{-\frac {\nu +3}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )-2 J_{\frac {1}{\nu +2}-1}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )\right )-c_1 J_{-\frac {1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )}{2 a x \left (c_1 J_{-\frac {1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )+J_{\frac {1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )\right )}\right \}\right \} \]
Maple: cpu = 0.046 (sec), leaf count = 214 \[ \left \{ y \left ( x \right ) ={\frac {1}{ax} \left ( -{{\sl J}_{{\frac { 3+\nu }{\nu +2}}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}} \right )}\sqrt {-ab}{x}^{{\frac {\nu }{2}}+1}{\it \_C1}-{{\sl Y}_{{ \frac {3+\nu }{\nu +2}}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2 }}\right )}\sqrt {-ab}{x}^{{\frac {\nu }{2}}+1}+{\it \_C1}\,{{\sl J}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1} }{\nu +2}}\right )}+{{\sl Y}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{ \frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )} \right ) \left ( {\it \_C1}\,{{\sl J}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{\frac {\sqrt {- ab}{x}^{\nu /2+1}}{\nu +2}}\right )}+{{\sl Y}_{ \left ( \nu +2 \right ) ^{-1 }}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )} \right ) ^ {-1}} \right \} \]
Sage: cpu = 0 (sec), leaf count = 0 \[ \text {Maxima was unable to solve this ODE} \]